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Adsorption in a spherical cavity
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This paper reports on studies of adsorption in spherical cavities of different sizes. The calculations
have been carried out by the density functional approach. We have studied the influence of the cavity
size and attractive particle-cavity forces on the phase behavior of confined fluids. We find that capillary
condensation occurs. As the radius of the cavity is decreased, the transition is shifted toward lower den-
sities of the bulk fluid, which is in equilibrium with the fluid in the cavity.

PACS number(s): 68.45.—v, 68.10.—m

I. INTRODUCTION

In recent years significant progress has been made in
understanding fluid behavior in contact with planar walls
and in pores of planar or cylindrical geometry [1-10].
Recently, there has also been growing interest in other
geometries involving cases of geometrically nonuniform
walls and pores [7,11-18]. This is because such systems
are not only related to various important practical pro-
cesses, but they also exhibit a rich variety of phase
behavior. However, the problem of nonplanar inter-
phases is still far from being complete. By this, we mean
problems involving not only spherical cavities, but also
adsorption on colloidal particles. Note that the adsorp-
tion in spherical cavities has been studied previously in
Refs. [7,13—-15] by using both theoretical approaches and
computer simulations. There are also theoretical works
devoted to the problem of a description of fluids inside of
spherical vesicles [19].

The usual approaches to the study of porous systems
have been based on either computer simulations or in-
tegral equations or density functional theories [1,2,7,14].
Among the usual techniques in liquid theory, density
functional theories [2,7(b),20] have been shown to be both
computationally simple and reliable for the description of
simple liquids in the inhomogeneous phase. For this
case, the most successful density functional theories are
those which involve a coarse-grained average density.
One should perhaps mention here that, to our knowledge,
one of the first nonlocal density functional expansions for
the direct correlation function was proposed in Ref. [21].

In this work we study adsorption in spherical cavities.
One of the important questions we consider is how the
size of cavities affects adsorption and the transitions in
adsorbed layers, e.g., capillary condensation and surface
wettability. The theoretical description is based on the
equation for the density profile developed from the Evans
and Tarazona [2,20] version of the density functional ap-
proach, which has been proved to be successful for treat-
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ing adsorption at planar interphases and in slitlike and
cylindrical pores, at least when simple fluids are con-
sidered. The main goal of the calculations performed
here is to apply this theory to the case of adsorption of a
Lennard-Jones fluid inside of a cavity with repulsive-
attractive walls. The fluid inside the cavity is assumed to
be in equilibrium (i.e., at the same chemical potential)
with a bulk fluid. In practice, this could be achieved by
means of a hole in the cavity wall. The mechanism for
achieving this equilibrium is not specified in our formal-
ism. We assume only that the spherical symmetry is not
affected.

II. THEORY

Let us consider [2] the definition of the grand potential
O:

Q=F+fdrn(r)[v(r)—y] , (1)

where p is the chemical potential, n(r) is the inhomo-
geneous density, and v (r) is the fluid-solid interaction po-
tential. We divide the functional F into two parts: the
contributions due to the repulsive forces and the attrac-
tive forces between the molecules, Fx and F 4, respective-
ly. The former contribution is modeled by hard spheres
with a suitable diameter d and the latter contribution is
treated in a mean-field approximation. To calculate Fg, a
smoothed nonlocal density function 7 (r) is introduced,

ii(r)=fdr’n(r’)w(lr—r'|,n(r)) , (2)

where w is a weight function. This function is assumed to
be described by a power series expansion

w(r,n)=wy(r)+w,(r)n +w,(rin?, (3)

and the coefficients w,, w;, and w, are given by Tarazona
[19]. The free energy then takes the form

F= [drn(0){kT[Inn (DA —1]+£(7(r)}
+1 [drdrn(on(u,(Ir—r'), @)

where A is the thermal wavelength, u , is the attractive
part of the interparticle potential, and f is the free-energy
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density of a hard-sphere fluid. To calculate f the
Carnahan-Starling equation [22] is used:

f(n)/kT=n(4—37)/(1—7)*, (5)

where n=md>n,/6 is the packing fraction and ng is the
bulk fluid density.

The equilibrium density profile minimizes the grand
potential Q; thus the local density is evaluated from the
condition [2,20]

0Q[n(r)]/dn(r)=0. (6)

This gives the integral equation for the density profile.
As usual, the excess adsorption isotherm I is defined by
the equation

AT= [dr{n(r)—n,], ()

where A is the area; the integration is performed over the
entire volume available to particles of the fluid and n, is
the density of a uniform system having the same chemical
poteutial as the fluid in the cavity. For example, as al-
ready mentioned, this uniform fluid might be a fluid out-
side the cavity and “‘connected” to the fluid in the cavity
by a small hole.

III. RESULTS AND DISCUSSION

In this work we consider a Lennard-Jones fluid with a
cutoff:

4e[(o,/r)2—(a,/r)®] for r<r,

ulr)= 0 forr>r

(8)

c ?

where the cutoff distance r, has been assumed to be
r.=2.50;. The division of the potential u () we employ
here,

—e for r <2'%q,

u(r) for r>2Y% , ®)

uA(r)z

has been used in some density functional calculations
[2,11,12]. The reference hard-sphere diameter is o,. We
have assumed that € /k and o are thosoe characteristic for
argon, i.e., e/k=120 K and 0=3.4 A. Without loss of
generality, we can also use o as a unit of length.

To calculate the attractive interaction between the cav-
ity and a fluid particle, we assume that the surface of the
cavity is “divided” into attractive elements smeared on
the surface. Therefore we perform an integral over the
whole set of attractive elements given by

v(R)=fs(4£,s[{als/2(r)}12—{a,s/Z(r)]G])dr, (10)

where €, and o are the potential parameters, R is the
distance from the center of the cavity, and =(r) is the dis-
tance from the point (0,0,R) to a point on the surface of
the cavity of diameter o;. In the case of a planar surfaces
(i.e., when o;,— o) the last equation leads [23] to the
well-known Lennard-Jones (10,4) function. In all our cal-
culations we have assumed that o, =0.9.

The method of solution of the density profile equation
was based upon a standard iterational procedure. Note

that at some values of the chemical potential, corre-
sponding to the bulk or uniform fluid which is in equilib-
rium with the confined fluid, multiple solutions are possi-
ble. Obviously, the thermodynamically stable solution
should correspond [2] to the minimum of Q. In the cases
which we have investigated, at some thermodynamic con-
ditions of bulk density and the temperature, two solutions
of Eq. (6) have been found. At a constant temperature we
plot the grand potential Q versus the bulk density (cf.
Ref. [24]). Obviously in the transition region this plot
consists of two intersecting curves; the intercept of these
two branches determines the equilibrium transition point.
The above procedure is equivalent to the classical
Maxwell construction for a given step in the adsorption
isotherm [23].

It is well known that the fluid confinement of the fluid
leads to a shift of the fluid-gas coexistence curves towards
lower values of the chemical potential. This phenomenon
is known as a capillary condensation [3—12]. In addition
to including capillary condensation, confinement affects
other possible transitions in the structure of surface film,
such as layering and wetting transitions.

Before discussing the results, we should note that the
mean-field approach for attractive interparticle forces en-
forces the possible transitions. For example, it is well
known that for one-dimensional systems the theory
which is the counterpart of that used here leads to un-
physical results, i.e., to the prediction of a first-order
liquid-gas transition. In the case of a real fluid confined
in a spherical cavity, the system always has a finite size
and, consequently, discontinuous jumps in the adsorption
isotherms should become smooth with inflexion points.
By comparing the predictions of the present approach for
a such case one defines eventually the location of the
inflexion point as the characteristic point.

In Figs. 1, 2, and 3 we show examples of the density
profiles obtained for the cavity of diameter 20. The
curves given in Fig. 1 were evaluated for g, /k=300 K.
In the case of the curves given in Fig. 2 the adsorbing po-
tential was lower and g, /k=200 K. The lowest adsorb-
ing potential £, /k=100 K is for the case of the curves
presented in Fig. 3. Figure 4 shows examples of the ad-
sorption isotherms evaluated from the density profiles.

Depending on the strength of the cavity-particle ener-
gy, and on the temperature, different scenarios occur for
the pore filling. When the temperature is low enough and
the adsorbing potential high, the “condensation” occurs
in the inner part of the pore. The number of layers
completed before condensation is 5-6 [see Fig. 1(a)]. In
this case the filling of the subsequent layers is manifested
as a series of “continuous steps” leading to a final discon-
tinuity in the adsorption isotherm (see Fig. 4). We know
[2] that at a still lower temperature, a higher adsorbing
potential, and when o;— «, i.e., for a planar wall, the
theory would lead to a discontinuous filling of the se-
quence of layers in n (r). This phenomenon is known as
the “layering transition” [2]. Finite curvature of the sur-
face rounds these transitions [25,26].

When the temperature increases, the stepwise charac-
ter of the adsorption isotherm becomes less visible (see
Fig. 4) and there are only three first layers adjacent to the
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FIG. 1. The density profiles in the spherical cavity of diame-
ter 0;,=20. The energy parameter g, /k=300 K and the tem-
perature to (a) 84 K and (b) 100 K. The curves (in order from
the bottom) in (a) were calculated for n,=0.0005, 0.00012,
0.000 14, and 0.0020. The curves (in order from the bottom) in
(b) are for n,=0.001, 0.002, 0.003, and 0.004, and 0.007.
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FIG. 2. The density profiles in the spherical cavity of diame-
ter o0;=20. The energy parameter ¢, /k was equal to 200 K and
the temperature to (a) 84 K and (b) 100 K. The curves (in order
from the bottom) in (a) were calculated for ny,=0.0002, 0.000 12,
0.000 15, and 0.0022. The curves (in order from the bottom) in
(b) are for n,=0.002, 0.006, and 0.0075. The curve marked by
m corresponds to a metastable state.
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FIG. 3. The density profiles in the spherical cavity of diame-
ter o;=20. The energy parameter €, /k was equal to 100 K and
the temperature to 100 K. The curves (in order from the bot-
tom) were calculated for n,=0.002, 0.004, and 0.008.

cavity wall before the ‘“condensation” is completed [see
Fig. 1(b)].

In the case of a “weaker” surface at low temperatures,
the number of “completed” layers before the “condensa-
tion point” decreases [see Fig. 2(b)]. When the tempera-
ture also increases, only the first layer adjacent to the
cavity wall is filled before ‘“‘condensation” [Fig. 2(b)].
The density profile marked by the label “m” in Fig. 2(b)
corresponds to the metastable situation.

With a subsequent decrease of the adsorbing potential,
further characteristic changes occur (see Fig. 3). Before
rapid condensation inside of the whole pore, only a thin
film at the surface of the cavity is developed. In the case
of adsorption on a planar wall, the adsorbed film may un-
dergo the so-called thin-thick film transition, or prewet-
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FIG. 4. Adsorption isotherms in a spherical cavity of diame-
ter ;=20 at (a) 7=84 K and (b) T=100 K. The numbers 100,
200, and 300 denote the values of the energy parameter g, /k.
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ting transition [2,27]. For adsorption in slitlike pores a
competition between prewetting and capillary condensa-
tion can be also observed [24]. In the case of any finite
curvature, the prewetting transitions are smeared out; the
nonzero curvature of the wall acts as ‘““an external field”
shifting the observer away from the transition at zero
curvature [25,26]. Nevertheless, when the cavity is large,
we can expect from the theory the presence of a continu-
ous jump, corresponding to the prewetting transition in
the limit 0;— o . In the case of the curves given in Fig. 3
it is very difficult to check whether the film fills the whole
cavity or only a part of it and if there is another step in
the adsorption isotherm, connected with the filling of the
remaining part of the pore. Our calculations suggest
rather the existence of a single step on the adsorption iso-
therm, connected with “condensation.”

Note that for a low temperature and a high chemical
potential (or density) of bulk gas, which is in equilibrium
with the fluid inside the cavity, the density profile exhib-
its a series of well-developed peaks, indicating the forma-
tion of an “ordered” structure inside the cavity [see Fig.
2(b), for example]. In such a case the peak at the pore
center can grow and become higher than the outermost
peaks. Obviously, this is connected with the existence of
a rather high potential field at the pore center, which is
created by the “ordered” confined phase.

When the size of the cavity decreases, the adsorbing
potential becomes stronger. Obviously, this effect is
significant for small cavities. In such a case, all the above
described phenomena are shifted towards lower bulk gas
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FIG. 5. The density profiles in the spherical cavity of diame-
ter 0,=10. The energy parameter g, /k was equal to (a) 200 K
and (b) 100 K. The temperature is 100 K. The curves (in order
from the bottom) in (a) were calculated for ny,=0.002, 0.007,
and 0.008, whereas in (b) they were calculated for n,=0.001,
0.004, and 0.008.
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FIG. 6. Examples of the evaluated phase diagrams. The
solid line is the bulk dew line and the dotted lines (from the bot-
tom) are the parts of the capillary condensation line calculated
for 0;,=10 and for ¢, /k=200 and 300 K, respectively. The
points were evaluated for g;, /k=300 K, but pore o;=10.

densities. When the cavity is still “large” in comparison
with the molecules of the fluid, the height of the first
peak adjacent to its wall is almost unchanged. The most
visible changes occur at the cavity center. Because the
whole system becomes more ‘“‘ordered,” the central peak
increases significantly.

Figures 5(a) and 5(b) show examples of the density
profiles evaluated for the cavity having the diameter 10.
The potential parameter € /k was equal to 200 and 100 K,
respectively. Figure 5(a) should be compared with Fig.
2(b) and Fig. 5(b) should be compared with Fig. 3.
Whereas before ‘“condensation” the heights of the first
peaks in Figs. 2(b) and 5 are similar, the heights of the
same peaks in Figs. 3 and 5(b) are different. This illus-
trates that even small changes in the adsorbing potential
can influence the structure of the adsorbed film.

Finally in Fig. 6 we present examples of a part of the
phase diagram evaluated for the investigated systems.
The solid line is the dew line of the bulk system. All
remaining lines and points corresponding to the jumps in
the adsorption isotherm, which we treat as a “capillary
condensation.” Recall that the method of their evaluation
has been briefly described above; it was identical with
that presented in Ref. [24]. The confinement leads to the
shift of the line towards lower bulk gas densities. This
shift is bigger when the size of the pore decreases and
when the adsorbing potential increases. Note that only
parts of the diagrams for confined systems are presented
here.

IV. CONCLUSIONS

Before concluding it is necessary to make some com-
ments concerning the theoretical model. To perform our
calculations we have used an approach involving a
mean-field treatment of the attractive interparticle forces.
One well-known consequence for the bulk fluid, which is
in equilibrium with the investigated system, is a shift of
the critical point to higher temperatures. In addition, the
location of the transition point and the shape of the coex-
istence line of the bulk fluid are different from those ob-
tained from more refined theoretical models which take
molecular correlations into account. Of course, the re-
sults presented here also suffer from these limitations. As
we have stressed above, because of the finite size of the
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systems under study, we expect that the “condensation”
in an experimental system should occur continuously.

In this paper the usual density functional approach for
an inhomogeneous fluid has been extended to study the
adsorption of a fluid in a spherical cavity. We find that
many of the effects observed for the adsorption of a fluid
at a flat surface and slitlike pores are also present in the
spherical cavity. In particular, as the density increases,
layering in the density profile occurs with an abrupt
“condensation” of the fluid. Decreasing the radius of the
cavity shifts the transition towards lower densities of the
bulk fluid in equilibrium with the fluid in the cavity. Fur-

ther studies are possible. However, the main features of
adsorption in a spherical cavity have been pointed out.
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